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Abstract
We obtain exact moving and stationary, spatially periodic and localized
solutions of a generalized discrete nonlinear Schrödinger equation. More
specifically, we find two different moving periodic wave solutions and a
localized moving pulse solution. We also address the problem of finding exact
stationary solutions and, for a particular case of the model when stationary
solutions can be expressed through the Jacobi elliptic functions, we present
a two-point map from which all possible stationary solutions can be found.
Numerically we demonstrate the generic stability of the stationary pulse
solutions and also the robustness of moving pulses in long-term dynamics.

PACS numbers: 02.30.Ik, 05.45.Yv, 63.20.Ry

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation occurs ubiquitously [1] throughout
modern science. Most notable is the role it plays in understanding the propagation of
electromagnetic waves in glass fibers and other optical waveguides [2] as well as in the
temporal evolution of Bose–Einstein condensates [3]. One of the variants of the DNLS model
is the celebrated Ablowitz–Ladik (AL) model [4] which is an integrable model. Another
aspect which stands out in favor of the AL model is that, while most other DNLS models have
stationary wave solutions [5], this model has moving wave solutions. Further, these moving
waves avoid the discreteness energy barrier (the so-called Peierls–Nabarro (PN) barrier).
These solutions have played a major role in the computational studies of the corresponding
continuum NLS model [6] as well as in developing perturbation techniques [7]. It is clearly of
great interest to consider different variants of the DNLS equation [8–10] and to try to obtain
exact moving wave solutions [5, 11]. The existence of such solutions might help in discovering
new integrable models and would also help in further developing perturbative techniques in
DNLS-type equations. The purpose of this paper is to report on the existence of exact moving
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as well as stationary solutions in a generalized DNLS model with seven parameters. For finite
lattices, we find two different periodic moving wave solutions while for the infinite lattice we
find a localized moving pulse solution.

In a recent paper, Pelinovsky [9] has addressed the question of spatial discretization of
the NLS equation with cubic nonlinearity:

iu̇ + uxx + 2|u|2u = 0. (1)

While the standard choice for the DNLS equation is

iu̇n + un+1 + un−1 − 2un + 2|un|2un = 0, (2)

strictly speaking, there is no unique choice. Perhaps the only constraint on the corresponding
discrete model is that in the continuum limit it should go over to the NLS equation (1). By
demanding that the semi-discretization is symplectic and few other requirements, Pelinovsky
[9] showed that if one writes the DNLS equation in the form

iu̇n + un+1 + un−1 − 2un + f (un−1, un, un+1) = 0, (3)

then the most general form for the nonlinear function f is given by

f = α1|un|2un + α2|un|2(un+1 + un−1) + α3u
2
n(ūn+1 + ūn−1)

+ α4un(|un+1|2 + |un−1|2) + α5un(ūn+1un−1 + ūn−1un+1)

+ α6ūn

(
u2

n+1 + u2
n−1

)
+ α7ūnun+1un−1 + α8(|un+1|2un+1 + |un−1|2un−1)

+ α9
(
ūn−1u

2
n+1 + ūn+1u

2
n−1

)
+ α10(|un+1|2un−1 + |un−1|2un+1), (4)

where ū represents complex conjugate, and the real-valued parameters (α1, . . . , α10) satisfy
the continuity constraint:

α1 + α7 + 2(α2 + α3 + α4 + α5 + α6 + α8 + α9 + α10) = 2. (5)

The main goal of this paper is to obtain moving as well as stationary solutions in this generalized
model and study their stability.

We note in passing that, under weaker constraints than that used in [9], one can add to (4)
a term proportional to un(|un−1un| + |unun+1|), which was demonstrated to be translationally
invariant and conserving the norm, �|un|2 [8].

The paper is organized as follows. In section 2, we derive exact moving solutions for a
seven-parameter DNLS model of equation (4) with α1 = α8 = 0 under the constraint (5). In
addition, for a five-parameter translationally invariant DNLS equation we obtain a nonlinear
map from which all possible stationary solutions can be derived. In section 3, we present
numerical results for the stationary and moving pulse solutions to demonstrate their stability.
Section 4 summarizes our main findings and concludes the paper. In the appendix, we list the
identities for the Jacobi elliptic functions used in the derivation of the periodic wave solutions.

2. Analytical results

We now show that two moving periodic wave solutions can be obtained with this general cubic
polynomial in case terms of the type |un|2un are absent, i.e.

α1 = α8 = 0. (6)

It may be added here that the famous AL moving wave solutions are obtained in case only α2

is nonzero while all other αi are zero.
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2.1. Solution I

In particular, it is not difficult to show that one of the exact periodic wave solutions to
equation (3) [with f being given by equation (4) satisfying constraints (5) and (6)] is given by

un = A exp[−i(ωt − kn + δ)] dn[β(n − vt + c),m], (7)

provided the following six relations are satisfied:

vβ = 2A2(α2 − α3) sin(k) cs(β,m), (8)

α6 cs(β,m) sin(2k) + [α9 sin(3k) − α10 sin(k)] cs(2β,m) = 0, (9)

sin(k)

A2
= (α2 − α3) sin(k) cs2(β,m) − α6 sin(2k) ds(β,m) ns(β,m)

− [α9 sin(3k) − α10 sin(k)][cs2(2β,m) + ds(2β,m) ns(2β,m)], (10)

[α4 + α6 cos(2k)] cs(β,m) + [α9 cos(3k) + α10 cos(k)] cs(2β,m) = 0, (11)
cos(k)

A2
= [α2 + α3] cos(k) cs2(β,m) − [α4 + α6 cos(2k)] ds(β,m) ns(β,m)

+ [2α5 cos(2k) + α7] cs(β,m) cs(2β,m) − [α9 cos(3k) + α10 cos(k)]

× [ds(2β,m) ns(2β,m) − cs2(2β,m)], (12)
ω

A2
− 2

A2
= −2[α2 + α3] cos(k) ds(β,m) ns(β,m)

+ 2[α4 + α6 cos(2k)] cs2(β,m) − [2α5 cos(2k) + α7] cs2(β,m). (13)

Here c and δ are arbitrary constants, k, ω and v denote the wavenumber, frequency and
velocity, respectively, of the periodic wave whereas cs(a,m), ds(a,m), ns(a,m) stand for the
Jacobi elliptic functions cn(a,m)/sn(a,m), dn(a,m)/sn(a,m), 1/sn(a,m) respectively with
m being the modulus parameter (0 � m � 1) [12]. While deriving these relations, use has
been made of the local identities (A.1)–(A.7) for Jacobi elliptic functions dn(x,m) [13] which
are given in the appendix.

It may be noted that equations (8)–(13) determine the five parameters A,ω, k, v, β and
give us one constraint between the eight parameters α2, . . . , α10 (except α8). In view of
the constraint (5) between these parameters, it then follows that we have obtained a moving
periodic wave solution with six parameters. As expected, in the limit α2 �= 0 while all other
αi = 0, we recover the well-known periodic wave solution of the AL problem [14]. Note
that in order that the periodic solution be compatible with the lattice, the modulus m has to
be chosen such that βNp = 2K(m) where K(m) denotes the complete elliptic integral of the
first kind [12] and Np is the periodicity of the lattice [5].

2.2. Solution II

As in the AL case, there is another periodic wave solution to the DNLS equation (3) with f

being given by equation (4) satisfying constraints (5) and (6). It is given by

un = A
√

m exp[−i(ωt − kn + δ)] cn[β(n − vt + c),m], (14)

provided the following six relations are satisfied

vβ = 2A2(α2 − α3) sin(k) ds(β,m), (15)

α6 sin(2k) ds(β,m) + [α9 sin(3k) − α10 sin(k)] ds(2β,m) = 0, (16)
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sin(k)

A2
= (α2 − α3) sin(k) ds2(β,m) − α6 sin(2k) cs(β,m) ns(β,m)

− [α9 sin(3k) − α10 sin(k)][ds2(2β,m) + cs(2β,m) ns(2β,m)], (17)

[α4 + α6 cos(2k)] ds(β,m) + [α9 cos(3k) + α10 cos(k)] ds(2β,m) = 0, (18)

cos(k)

A2
= [α2 + α3] cos(k) ds2(β,m) − [α4 + α6 cos(2k)] cs(β,m) ns(β,m)

+ [2α5 cos(2k) + α7] ds(β,m) ds(2β,m) − [α9 cos(3k) + α10 cos(k)]

× [cs(2β,m) ns(2β,m) − ds2(2β,m)], (19)

ω

A2
− 2

A2
= −2[α2 + α3] cos(k) cs(β,m) ns(β,m) + 2[α4 + α6 cos(2k)] ds2(β,m)

− [2α5 cos(2k) + α7] ds2(β,m). (20)

While deriving these relations, use has been made of the local identities (A.8)–(A.14) for the
Jacobi elliptic function cn(x,m) [13] which have been given in the appendix.

As with the first solution, we again have a moving periodic wave solution with six
parameters and again in the limit when only α2 �= 0 while all other αi are zero, we recover
the well-known periodic wave solution of the AL problem [14]. In addition, note that in order
that the periodic solution be compatible with the lattice, the modulus m has to be chosen such
that βNp = 4K(m) where Np is the periodicity of the lattice [5].

2.3. Two-point maps for stationary solutions

With the ansatz un(t) = fn e−iωt we obtain from the DNLS equations (3) and (4) the following
second-order difference equation for the amplitudes:

fn−1 − (2 − ω)fn + fn+1 + α1f
3
n + (α2 + α3)f

2
n (fn−1 + fn+1) + (α4 + α6)fn

(
f 2

n−1 + f 2
n+1

)
+ (2α5 + α7)fn−1fnfn+1 + α8

(
f 3

n−1 + f 3
n+1

)
+ (α9 + α10)fn−1fn+1(fn−1 + fn+1) = 0. (21)

For the following choice of parameters [that already includes the continuity constraint
(5)]

α1 = α8 = 0, α4 = −α6, α9 = −α10, and α7 + 2[α2 + α3 + α5] = 2, (22)

we get from (21) the following second-order difference equation for the amplitudes

fn−1 − (2 − ω)fn + fn+1 + (α2 + α3)f
2
n (fn−1 + fn+1) + (2α5 + α7)fn−1fnfn+1 = 0. (23)

In this case, the stationary problem is exactly solvable. Indeed, one can obtain the first integral
of (23) and present it in the form of a two-point nonlinear map

fn+1 = (2 − ω)
Zfn ± √

R(fn)

2 − ω + Yf 2
n

,

R(fn) = − Y

2 − ω

(
K − Xf 2

n + f 4
n

)
,

(24)

where

Z = (2 − ω)2 − K(2α5 + α7)
2

2K(α2 + α3)(2α5 + α7) + 2(2 − ω)
,

Y = 2(α2 + α3)Z + (2α5 + α7), (25)

X = −KY 2 + (2 − ω)2(1 − Z2)

(2 − ω)Y
.
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Apart from the model parameters αi and frequency ω, the nonlinear map (24), (25) contains
the integration constant K. Due to the symmetry of equation (23), one can substitute fn+1 for
fn−1 in (24). For any set of admissible values f0,K and ω one can find the amplitudes of
a stationary solution by iterating (24). For R(fn) > 0, the map (24) gives two values for
fn+1 and one should take the one which satisfies the original three-point problem (23). It is
sufficient to take fn+1 different from fn−1.

The above two-point map can also be constructed from the Jacobi elliptic function
solutions (7) or (14) as described in our recent work on a discrete φ4 model [15]. The
corresponding DNLS equation has five free parameters because (22) sets up five constraints
between the ten parameters (αi) of the model. We note that any stationary solution to the
DNLS equation defined by (3) and (4) with the parameters satisfying (22) can be constructed
from the nonlinear map (24), (25). Such investigations have been carried out in our recent
work on the DNLS equation [11] and the φ4 equation [15, 16].

It is also worth pointing out that the three-point problem given by equation (23) and
the three-point problem studied by Quispel et al [17] both can be presented in the following
general form:

fn+1 = h1(fn) − h2(fn)fn−1

h2(fn) − h3(fn)fn−1
. (26)

For a particular choice of the functions hi(fn), Quispel et al have found a two-point map (i.e.,
the first integral of the corresponding three-point problem) which is quadratic in both fn and
fn+1 [17]. For our choice of these functions,

h1(fn) = (2 − ω)fn, h2(fn) = 1 + (α2 + α3)f
2
n , h3(fn) = −(2α5 + α7)fn, (27)

we found the map (24) which is, in general, quartic in fn and quadratic in fn+1. Clearly, our
map (24) does not belong to the 12-parameter map discussed in [17].

The above result is new in that it generalizes the map reported in our recent work [15].
For completeness, let us also reproduce here the well-known result [9, 15] for the case of

α8 = α9 + α10, α1 = α4 + α6, α1 = 2α5 + α7, and 4α1 + 2[α2 + α3 + 2α8] = 2, (28)

when the continuity constraint (5) is satisfied and (21) reduces to the following second-order
difference equation:

fn−1 − (2 − ω)fn + fn+1 + α1fn

[
f 2

n−1 + f 2
n + f 2

n+1 + fn−1fn+1
]

+ (α2 + α3)

× f 2
n (fn−1 + fn+1) + α8

[
f 3

n−1 + f 3
n+1 + fn−1fn+1(fn−1 + fn+1)

] = 0. (29)

The first integral of (29) is

V (fn−1, fn) ≡ f 2
n−1 + f 2

n − (2 − ω)fn−1fn + α1
(
f 2

n−1 + f 2
n

)
fn−1fn

+ (α2 + α3)f
2
n−1f

2
n + α8

(
f 4

n−1 + f 4
n

)
+ K = 0, (30)

where K is the integration constant. This is so because (29) can be rewritten in the form
V (fn, fn+1) − V (fn−1, fn)

fn+1 − fn−1
= 0, (31)

and one can verify that if V (fn−1, fn) = 0 then (29) is satisfied. Solving the algebraic problem
(30) iteratively for an admissible initial value f0 one can construct a stationary solution to
(29). This model has six free parameters because (28) sets up four constraints between the ten
parameters (αi) of the model. In general, stationary solutions to the DNLS equation with the
parameters satisfying (28) cannot be expressed in terms of the Jacobi elliptic functions, but, as
was already mentioned, they can be constructed iteratively from (30) and they can be placed
anywhere with respect to the lattice sites.

We note that the translationally invariant discrete models possessing the form of
equation (31) have been introduced by Kevrekidis in [18].
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2.4. Moving and stationary pulse solution

In the limit m → 1, both the periodic moving wave solutions (7) and (14) reduce to the
localized moving pulse solution

un = A exp[−i(ωt − kn + δ)] sech[β(n − vt + c)], (32)

and the relations (8)–(13) [as well as (15) to (20)] take a simpler form

v = 2 sin(k) sinh(β)

β
, (33)

2α6 sin(2k) cosh(β) + α9 sin(3k) − α10 sin(k) = 0, (34)

[sinh2(β) + (α3 − α2)A
2] sin(k) = 0, (35)

A2 = 2 sinh2(β) cosh(β) cos(k)

2(α2 + α3) cos(k) cosh(β) + 2(α5 − α6) cos(2k) + α7 − 2α4
, (36)

2[α4 + α6 cos(2k)] cosh(β) + α9 cos(3k) + α10 cos(k) = 0, (37)

ω = 2[1 − cos(k) cosh(β)]. (38)

From (33), pulse velocity is zero when k = 0 or k = π . In the former case, we have the
non-staggered stationary pulse while in the latter case we have the staggered pulse. Needless to
say that these remarks equally apply to the periodic wave solutions (7) and (14). In particular
for k = 0 we obtain the non-staggered stationary pulse solution

un = A exp[−i(ωt + δ)] sech[β(n + c)],

ω = 2 − 2 cosh(β),

A2 = 2 sinh2(β) cosh(β)

2(α2 + α3) cosh(β) + 2(α5 − α4 − α6) + α7
,

2(α4 + α6) cosh(β) + α9 + α10 = 0,

(39)

while for k = π we obtain the staggered stationary pulse:

un = (−1)nA exp[−i(ωt + δ)] sech[β(n + c)],

ω = 2 + 2 cosh(β),

A2 = −2 sinh2(β) cosh(β)

−2(α2 + α3) cosh(β) + 2(α5 − α4 − α6) + α7
,

2(α4 + α6) cosh(β) − α9 − α10 = 0.

(40)

3. Analysis of the pulse solution and numerical results

For given model parameters αi , the moving pulse solution (32)–(38) is characterized by two
parameters, β > 0 and −π < k � π . As can be seen from (33) and (38), the pulse velocity
and frequency do not depend on model parameters while the pulse amplitude does, see (36).
Using (33) one can express ω in (38) as a function of v and β. Also using (38) one can express
the group velocity dω/dk. The pulse solution exists for given β and k if the right-hand side of
(36) is positive and if (34), (35) and (37) can be satisfied together with the continuity constraint
(5), where we assume (6).

As for the stationary pulse solution (39) or (40), for given model parameters αi , the
moving pulse solution is characterized by a single parameter β > 0. In general, as far as
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(a)

(b)

Figure 1. (a) Velocity v and (b) frequency ω of the pulse as functions of the wavenumber parameter
k at a fixed value of the other parameter, inverse width of the pulse, β = 1/2 (dashed lines) and
β = 1 (solid lines). These functions are defined by (33) and (38) and they do not depend on the
model parameters αi . Pulse velocity is zero at k = 0 and k = π , the former case corresponds to
the non-staggered stationary pulse (39) while the latter case to the staggered stationary pulse (40).

the model parameters are fixed, the parameter β of the stationary pulse is also fixed through
the last equation in (39) or (40). However, for α4 = −α6 and α9 = −α10, this constraint
disappears and β can change continuously within a domain where A2 > 0. Recall that in this
particular case the stationary pulse solution can also be constructed from the two-point map
presented in section 2.3, for which one should set the integration constant K = 0.

3.1. Different moving solutions

Coming back to the moving pulse solution (32)–(38), several comments are in order.

(1) The relations (33) and (38) are exactly the same as in the AL case [4]. It is indeed
remarkable that the velocity v and the frequency ω in our case are identical to those in
the AL model even though our model has eight nonlinear terms (with coefficients α2 to
α10 with α8 = 0) while AL has only one term with α2 = 1. It is amusing to note that
these two relations have also been obtained by Pelinovsky and Rothos from an entirely
different approach [19], namely from the linear dispersion relation for the corresponding
differential advance-delay equation. In figure 1, we show how v and ω depend on one
of the pulse parameter, k, at fixed values of the other parameter, β = 1/2 (dashed lines)
and β = 1 (solid lines).

(2) Unfortunately, we do not know the Hamiltonian from which the DNLS equation (3) with
f given by equation (4) can be derived. As a result, we cannot demonstrate the absence
of the PN barrier from the energy consideration. However, since our stationary solutions
have an effective translational invariance (i.e. the solution is valid for any value of the
constant c), this suggests that the PN barrier would be zero for these solutions.

(3) From equation (35) it follows that the moving pulse solution exists only if α2 and/or α3

are nonzero. Further, in case α2 = 0, then it follows from equation (35) that α3 < 0.
(4) In the limit when only α2 is nonzero while all other αi are zero, we recover the well-

known AL moving pulse solution [4].
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(a)

(b)

(c)

Figure 2. Nonzero model parameters α3 and α7 and the pulse amplitude A as functions of the
parameter k at a fixed value of the other parameter β = 1/2 (dashed lines) and β = 1 (solid lines).
These functions are defined by (43). For β = 1/2, the solution exists (i.e. A is real) for |k| < 1.11
while for β = 1 it exists for |k| < 1.23. The velocity v and frequency ω of the pulse are shown in
figure 1.

(5) The sn-type and hence dark soliton solution can also be obtained in this generalized
model provided the right-hand side of the continuity equation (5) is −2 (instead of 2).

(6) In case only α2 and/or α3 are nonzero while all other αi = 0, or if equation (28) is
satisfied, then the generalized DNLS equation (3) with f given by equation (4) conserves
the momentum defined by

P = i
∑

n

(un+1ūn − ūn+1un). (41)

On the other hand, in case only α5 and/or α7 are nonzero while all other αi = 0, then the
generalized DNLS equation (3) with f given by equation (4) conserves the momentum
defined by

P = i
∑

n

(un+2ūn − ūn+2un). (42)

Expression (42) is similar to that introduced in [15] for the φ4 discrete equation.
(7) From equations (33)–(38), it follows that the moving pulse solution is also possible

when only two of the eight parameters are nonzero. For example, the moving pulse
solution (32) exists in case α3 and α7 are nonzero while all other αi are zero. While
the relations (33) and (38) are always valid, the other relations and the constraint (5)
take the form

α3 = 1

1 − 2 cos(k) cosh(β)
, α7 = 2(1 − α3),

A2 = cos(k) cosh(β) sinh2(β)

α3[cos(k) cosh(β) − 1] + 1
.

(43)

For a pair of pulse parameters, k and β, we find α3 and then α7 and A from (43) and
present the result in figure 2 for β = 1/2 (dashed lines) and β = 1 (solid lines). For
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Figure 3. Pulse amplitude A as a function of the parameter k at β = 1/2 (dashed lines) and β = 1
(solid lines) for the model with three nonzero parameters, α3, α5 and α7. Here we set α5 = 1 and
find other model and pulse parameters from (44). For β = 1/2, the solution exists (i.e. A is real) for
|k| < π/4 and 1.12 < |k| < 3π/4, while for β = 1 it exists for |k| < π/4 and 1.24 < |k| < 3π/4.
The velocity v and frequency ω of the pulse are shown in figure 1.

β = 1/2, the solution exists (i.e. A is real) for |k| < 1.11 while for β = 1 it exists for
|k| < 1.23. One can see that the non-staggered stationary pulse (k = 0) exists while the
staggered stationary pulse (k = π) does not exist in this case.

(8) The moving pulse solution (32) also exists in case only (i) α3 and α5 are nonzero; (ii)
α2 and α5 are nonzero and cos(2k) = 0, i.e., regardless of the model parameters, in this
case one can have only k = ±π/4 and k = ±3π/4. Constraints similar to those in (43)
are easily written down from relations (5) and (33)–(38). We were unable to find other
sets of model parameters supporting the pulse solution when there are only two nonzero
parameters.

(9) There are several possibilities, with three of the eight αi being nonzero (the remaining
five αi being zero), in which case the moving pulse solution (32) is still valid. These
cases are as follows: (i) α2, α3 and α5 are nonzero; (ii) α2, α3 and α7 are nonzero;
(iii) α3, α5 and α7 are nonzero; (iv) α2, α5 and α7 are nonzero; (v) α2, α4 and α6 are
nonzero with α4 = α6 and k = ±π/2; (vi) α3, α4 and α6 are nonzero with α4 = α6

and k = ±π/2; (vii) α2, α9 and α10 are nonzero with α9 = α10 and k = ±π/4 or
k = ±3π/4.
In all these cases, the constraints similar to those in (43) are easily obtained from
relations (5) and (33)–(38). For example, in case only α3, α5 and α7 are nonzero, while
the relations (33) and (38) are always valid, the other relations and the constraint (5)
take the form

α3 = 1 − 2α5 sin2(k)

1 − 2 cos(k) cosh(β)
, α7 = 2(1 − α3 − α5),

A2 = cos(k) sinh2(β) cosh(β)

1 + α3[cos(k) cosh(β) − 1] − 2α5 sin2(k)
.

(44)

The number of constraints in this case is such that one has a free model parameter, say
α5, and pulse parameters k and β can change continuously within a certain domain. For
α5 with a small absolute value the solution is close to (43) shown in figure 2, but, for
example, for α5 = 1 the result is qualitatively different, as it can be seen from figure 3.
Also note that in this case the non-staggered stationary pulse (k = 0) exists while the
staggered stationary pulse (k = π) does not exist.
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Figure 4. Pulse amplitude A as a function of the parameter k at β = 1/2 (dashed lines) and β = 1
(solid lines) for the model with three nonzero parameters, α2, α3 and α5. The relation between
model and pulse parameters is given by (45). For β = 1/2, the solution exists (i.e. A is real) for
|k| < 1.26 and π/2 < |k| � π , while for β = 1 it exists for |k| < 1.32 and π/2 < |k| � π . The
velocity v and frequency ω of the pulse are shown in figure 1.

On the other hand, in case only α2, α3, α5 are nonzero we have the following constraints

α3 = −α5 cos(2k)

2 cos(k) cosh(β)
, α2 = 1 − α3 − α5,

A2 = cos(k) sinh2(β) cosh(β)

(α2 + α3) cos(k) cosh(β) + α5 cos(2k)
.

(45)

The relation between pulse parameters and model parameters in this case is shown
in figure 4. In this case, one has both non-staggered and staggered stationary pulse
solutions for k = 0 and k = π , respectively.
We give two more solutions, for the case when only α2, α4 and α6 are nonzero,

A2 = sinh2 β

α2
, α4 = 1 − α2

2
, α4 = α6, k = ±π

2
, (46)

and for the case when only α2, α9 and α10 are nonzero,

A2 = sinh2 β

α2
, α10 = 1 − α2

2
, α9 = α10, k = ±π

4
, or k = ±3π

4
.

(47)

These two moving solutions are interesting because for them the relations (22) are
violated. These models have one free parameter, for example, α2 > 0. Among the
two pulse parameters, only β can change continuously, while k can assume only a few
isolated discrete values that do not depend on model parameters αi . For the cases when
there are only three nonzero parameters, we were unable to find sets of model parameters
supporting the pulse solution other than those described above.

(10) Similarly, there are several possibilities when less than eight parameters are nonzero and
still the moving pulse solution (32) continues to exist and relations similar to those in
equation (43) can easily be obtained in all these cases.

(11) Since the DNLS equation (3), (4) with any set of parameters αi satisfying the continuity
constraint (5) reduces to the same NLS equation (1), for a sufficiently wide (small β)
and slow (small |k|) pulse, all the solutions given above are close and can be well
approximated by the moving solution to the continuous NLS equation.
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3.2. Stability of the pulse solution

Let us now discuss the small amplitude vibration spectrum for the lattice containing a stationary
pulse in order to observe the peculiarities of the spectrum of the pulse in a translationally
invariant lattice and to discuss the stability of the pulse. The vibrational spectrum was
calculated following the methodology presented in [20] similar to the work in [11]. In brief,
we consider a small complex perturbation of a stationary solution and substitute the ansatz
un(t) = [fn + εn(t)] e−iωt with εn(t) = an(t) + ibn(t) into the DNLS equation (3), (4) and
obtain a linear equation for εn(t). Separating real and imaginary parts of the equation, we
derive the following system(

ḃ
ȧ

)
=

(
0 K
J 0

)(
b
a

)
, (48)

where vectors a and b contain an and bn, respectively, while the nonzero coefficients of
matrices K and J are given by

Kn,n−1 = 1 + (α2 + α3)f
2
n + (2α5 + α7)fnfn+1 + (α9 + α10)

(
f 2

n+1 + 2fn−1fn+1
)
,

Kn,n = −(2 − ω) + 2(α2 + α3)fn(fn−1 + fn+1) + (α4 + α6)
(
f 2

n−1 + f 2
n+1

)
+ (2α5 + α7)fn−1fn+1,

Kn,n+1 = 1 + (α2 + α3)f
2
n + (2α5 + α7)fn−1fn + (α9 + α10)

(
f 2

n−1 + 2fn−1fn+1
)
,

(49)

Jn,n−1 = −1 − (α2 − α3)f
2
n − 2α6fn−1fn − α7fnfn+1 − 2α9fn−1fn+1 + (α9 − α10)f

2
n+1,

Jn,n = (2 − ω) − 2α3fn(fn−1 + fn+1) − (α4 − α6)
(
f 2

n−1 + f 2
n+1

) − (2α5 − α7)fn−1fn+1,

Jn,n+1 = −1 − (α2 − α3)f
2
n − 2α6fnfn+1 − α7fn−1fn − 2α9fn−1fn+1 + (α9 − α10)f

2
n−1.

(50)

A stationary solution is characterized as linearly stable if and only if the eigenvalue problem(
0 K
J 0

) (
b
a

)
= γ

(
b
a

)
(51)

results in nonpositive real parts of all eigenvalues γ .
Setting in the above matrices fn = 0, and solving the resulting eigenvalue problem one

finds the spectrum of vacuum


 = ±
[
−ω + 4 sin2

(
Q

2

)]
, (52)

where 
 and Q are the frequency and the wavenumber of a small-amplitude harmonic mode,
respectively. A stationary pulse was placed in the middle of a lattice of N = 200 points and
the eigenvalue problem (51) was solved employing periodic boundary conditions. Here we
do not aim to present a comprehensive numerical study of the stability of the pulse because
the DNLS equation under consideration has a multi-dimensional parameter space and such
an exhaustive study would entail enormous effort. Instead, our intent is to check several sets
of parameters and to provide a few examples illustrating the generic stability of the pulse
solution.

Two examples of stationary, stable pulses and their spectra are presented in figure 5.
Left panels present the results for a non-staggered pulse, while the right panels are for a
staggered pulse. Model parameters correspond to a translationally invariant lattice, i.e., they
satisfy (22). For panels (a) and (b), parameters are α2 = 1, α3 = −1/2, α4 = −α6 =
1/2, α5 = −1/2, α7 = 2 and α9 = −α10 = −1/2. For panels (a′) and (b′), parameters are
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(a)

(b)

(a′)

(b′)

Figure 5. Two examples of (a) and (a′) stationary pulse profiles and (b), (b′) their spectra. Left
panels show the results for a non-staggered pulse, while right panels are for a staggered pulse.
Model parameters correspond to a translationally invariant lattice, i.e., they satisfy (22). For
(a) and (b), parameters are α2 = 1, α3 = −1/2, α4 = −α6 = 1/2, α5 = −1/2, α7 = 2 and
α9 = −α10 = −1/2. For (a′) and (b′), parameters are α2 = 1, α3 = 0, α4 = −α6 = 1/2, α5 =
−1/2, α7 = 1 and α9 = −α10 = −1/2. The pulses are defined by, respectively, (39) and (40)
with parameters β = 1, δ = 0 and c = 0.25. Pulses are placed asymmetrically with respect to
the lattice, nevertheless, they are stationary and stable since all eigenvalues γ have zero real parts.
The spectra also contain two pairs of zero eigenvalues, one pair corresponds to the translational
invariance and another to the invariance with respect to the phase shift.

α2 = 1, α3 = 0, α4 = −α6 = 1/2, α5 = −1/2, α7 = 1 and α9 = −α10 = −1/2. The choice
of parameters is rather arbitrary. For the non-staggered pulse, all coefficients are nonzero so
that all terms of the DNLS equation are involved. For the staggered pulse, we found that
nonzero α3 makes the pulse unstable, that is why we set this coefficient equal to zero. The
non-staggered and staggered pulses are defined by, respectively, (39) and (40) with parameters
β = 1, δ = 0 and c = 0.25. We then found for the non-staggered pulse ω = −1.0862 and
A = 1.2946, and for the staggered one, ω = 5.0862 and A = 1.1752. The pulses are placed
asymmetrically with respect to the lattice, nevertheless, they are stationary and stable since all
eigenvalues γ have zero real parts. The spectrum of non-staggered pulse contains the spectrum
of vacuum (52) with the bands 1.0862 � |
| � 5.0862; the three pulse internal modes with
frequencies ±0.195,±5.290 and ±6.396; and the two pairs of zero eigenvalues, one pair
corresponding to the translational invariance and another to the invariance with respect to the
phase shift. The spectrum of staggered pulse is similar but it contains not three but only one
pulse internal mode with frequencies ±5.308.

We have checked the stability of stationary pulses (both non-staggered and staggered)
with different β ∼ 1, and also different positions with respect to the lattice, c, and for various
model parameters with |αi | ∼ 1, and in many of the cases found these pulses to be stable.
Thus, we conclude that the stationary pulse solutions (39) and (40) to the DNLS equation (3),
(4) with parameters satisfying (22) are generically stable.

We have also checked the stability of a stationary pulse in the model where the pulse
solution exists only for a selected β and, for the pulse placed asymmetrically with respect to the
lattice we found that it is stable. In this simulation, for the solution (39) we took the following
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(a)

(b)

(a′)

(b ′)

Figure 6. (a) Non-staggered moving pulse at t = 0 and (a′) the same for the staggered pulse. In
(b) and (b′), the long-term evolution of pulse velocity is shown for the corresponding pulses for
the integration steps of τ = 5 × 10−3 (solid line) and τ = 2.5 × 10−3 (dashed line). A numerical
scheme with an accuracy O(τ 4) is employed. Pulses preserve their velocity with the accuracy
increasing with the increase in the accuracy of numerical integration. Within the numerical run,
the pulse dynamics is stable in spite of the presence of small perturbations in the system in the
form of rounding errors and integration scheme errors. The pulse in (a) is given by (32), (33),
(38) and (44). The model and pulse parameters are as follows: α3 = −0.473 034, a5 = 1
and α7 = 0.946 068; β = 1, k = 0.102 102 (close to 0), v = 0.239 563, ω = −1.070 09 and
A = 1.7087. The pulse in (a′) is given by (32), (33), (38) and (45). The model and pulse
parameters are as follows: α2 = 0.603 116, α3 = 0.096 8843 and a5 = 0.3; β = 1, k = 3.094 47
(close to π ), v = 0.110 719, ω = 5.082 74 and A = 1.651 72.

pulse parameters β = 1/2, c = 1/4, and model parameters α2 = −0.2553, α4 = α6 = −1/2
and α9 = 2.2553 with all other αi equal to zero. We then found ω = −0.2553 and A = 0.6557.

The robustness of moving pulse solutions was checked by observing the evolution of
their velocity in a long-term numerical run. For pulses with amplitudes A ∼ 1 and velocities
v ∼ 0.1 and for various model parameters supporting the pulse, |αi | ∼ 1, we found that
the pulse typically preserves its velocity with a high accuracy. Two examples of such
simulations, one for the non-staggered pulse and another one for the staggered pulse are given in
figures 6(a), (b) and (a′), (b′), respectively. In (a) and (a′), we show the pulse configuration at
t = 0 and in (b) and (b′) the pulse velocity as a function of time for two different integration
steps, τ = 5 × 10−3 (solid lines) and τ = 2.5 × 10−3 (dashed lines), while the numerical
scheme with an accuracy O(τ 4) is employed.

In both cases, one can note the linear increase in the pulse velocity with time, which is due
to the numerical error, since the slope of the line decreases with the decrease in τ . The presence
of perturbation in the form of rounding errors and integration scheme errors does not result
in pulse instability within the numerical run. Velocity increase rate for the staggered pulse in
(b′) is larger than for the non-staggered one in (b). This can be easily understood because the
frequency of the staggered pulse is almost five times larger than that of the non-staggered one.

The pulse presented in figure 6(a) is given by (44). The model has one free parameter
and we set α5 = 1. For the pulse parameters, we set β = 1 and k = 0.102 102 (close
to zero). Then we find from (32), (33), (38) and (44) the pulse velocity v = 0.239 563,
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(a′)

(b′)

(a)

(b)

Figure 7. Results similar to that shown in figure 6 but for models that are not translationally
invariant. Panels (a) and (a′) show the moving pulse profiles at t = 0. In (b) and (b′), the
long-term evolution of pulse velocity is shown for the corresponding pulses. The integration
steps are (b) τ = 10−3 (solid line) and τ = 5 × 10−4 (dashed line) and (b’) τ = 5 × 10−3

(solid line) and τ = 2.5 × 10−3 (dashed line). The pulse in (a) is given by (32), (33), (38) and
(46). The model and pulse parameters are as follows: α2 = 2, a4 = −1/2 and α6 = −1/2;
β = 1, k = π/2, v = 1.662, ω = −0.1822 and A = 0.8310. The pulse in (a′) is given by (32),
(33), (38) and (47). The model and pulse parameters are as follows: α2 = 2, α9 = −1/2 and
a10 = −1/2; β = 1, k = π/4, v = 2.350, ω = 2 and A = 0.8310.

frequency ω = −1.070 09 and amplitude A = 1.7087, and the dependent model parameters
α3 = −0.473 034 and α7 = 0.946 068.

In figure 6(a′), the moving pulse solution is given by (45). The model has one free
parameter and we set a5 = 0.3. For the pulse parameters, we set β = 1 and k = 3.094 47
(close to π ). Then we find from (32), (33), (38) and (45) the pulse velocity v = 0.110 719,
frequency ω = 5.082 74 and amplitude A = 1.651 72, and the dependent model parameters
α2 = 0.603 116 and α3 = 0.096 8843.

Similar results were observed for the cases when only α3 and α5 are nonzero; only α3

and α7 are nonzero; only α2, α3 and α5 are nonzero; only α2, α3 and α7 are nonzero; and only
α2, α5 and α7 are nonzero.

So far we have studied numerically the pulses in the models with the parameters
satisfying (22). However, moving pulse solutions exist even in the case when (22) is
violated. Two such solutions are presented by (46) and (47) together with (32), (33) and
(38). As can be seen from figure 7, the pulses show a stable long-term dynamics with
pulse velocity being practically constant with the accuracy increasing with decrease in the
step size of numerical integration. The pulse in (a) is given by (32), (33), (38) and (46).
The model and pulse parameters are as follows: α2 = 2, a4 = −1/2 and α6 = −1/2;
β = 1, k = π/2, v = 1.662, ω = −0.1822 and A = 0.8310. The pulse in (a′) is given by
(32), (33), (38) and (47). The model and pulse parameters are as follows: α2 = 2, α9 = −1/2
and a10 = −1/2; β = 1, k = π/4, v = 2.350, ω = 2 and A = 0.8310.

Velocity increase rate in (b) is considerably larger than in (b′) (note the different abscissa
scale for these two panels) and this result can be expected when we take into account that
pulse frequency in (b) is 11 times larger than in (b′).
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4. Conclusions and future challenges

For the nine-parameter DNLS equation (3), (4) with the continuity constraint (5), in
sections 2.1 and 2.2, we obtained the two moving periodic wave solutions for the case of
α1 = α8 = 0 (thus, the moving solutions are supported by the seven-parameter model). The
solutions have the form of dn and cn Jacobi elliptic functions. In the limit m → 1, both
solutions reduce to the moving pulse solution (see section 2.4). We found and described
several sets of model parameters supporting the moving pulse solution. For the particular
choice of model parameters (22), the problem of finding stationary solutions is integrable and
the first integral of this problem was given in section 2.3 in the form of a nonlinear map. From
this map any stationary solution of the corresponding problem can be constructed iteratively.

We found the stationary pulse solutions to be generically stable, i.e., for rather arbitrary
choice of model parameters |αi | ∼ 1, in many cases, the spectra of the small-amplitude
vibrations calculated for the lattice containing a pulse included no eigenvalues with positive
real parts. In addition, we confirmed the robustness of moving pulses by observing the
pulse velocity evolution in a long-term numerical run. We found the velocity to be nearly
constant and the deviation from constancy was attributed to the influence of the accuracy of
the numerical integration. We specifically note that the moving pulse solutions exist and they
exhibit a stable behavior in long-term numerical runs even for models which do not support
translationally invariant stationary pulse solutions, as demonstrated in figure 7.

On using the identities for the Jacobi elliptic functions cn and dn given below and similar
identities for sn, one can similarly obtain exact solutions of a rather general discrete λφ4 field
theory with four parameters, as well as of a modified Fermi–Pasta-Ulam (FPU) model [21],
which will be discussed elsewhere. Our results are potentially important for optical pulse
propagation in glass fibers and optical waveguides [2] and time evolution of Bose–Einstein
condensates [3].
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Appendix

We list here the various identities for the Jacobi elliptic functions dn(x,m) and cn(x,m) which
have been used in obtaining the various solutions in this paper.

Identities for dn(x,m)

dn2(x,m)[dn(x + a,m) + dn(x − a,m)]

= − cs2(a,m)[dn(x + a,m) + dn(x − a,m)] + 2ns(a,m) ds(a,m) dn(x,m),

(A.1)
dn(x,m) dn(x + a,m) dn(x − a,m) = −cs(a,m) cs(2a,m)[dn(x + a,m)

+ dn(x − a,m)] + cs2(a,m) dn(x,m), (A.2)

dn(x,m)[dn2(x + a,m) + dn2(x − a,m)] = ds(a,m) ns(a,m)[dn(x + a,m) + dn(x − a,m)]

− 2cs2(a,m) dn(x,m) + mcs(a,m)[cn(x + a,m) sn(x + a,m)

− cn(x − a,m) sn(x − a,m)], (A.3)
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dn(x + a,m) dn(x − a,m)[dn(x + a,m) + dn(x − a,m)]

= [ds(2a,m) ns(2a,m) − cs2(2a,m)][dn(x + a,m) + dn(x − a,m)]

+ mcs(2a,m)[cn(x + a,m) sn(x + a,m)− cn(x − a,m) sn(x − a,m)], (A.4)

dn2(x,m)[dn(x + a,m) − dn(x − a,m)] = −cs2(a,m)[dn(x + a,m) − dn(x − a,m)]

− 2mcs(a,m) cn(x,m) sn(x,m), (A.5)

dn(x,m)[dn2(x + a,m)− dn2(x − a,m)] = ds(a,m) ns(a,m)[dn(x + a,m)− dn(x − a,m)]

+ mcs(a,m)[cn(x + a,m) sn(x + a,m) + cn(x − a,m) sn(x − a,m)], (A.6)

dn(x + a,m) dn(x − a,m)[dn(x + a,m) − dn(x − a,m)]

= [ds(2a,m) ns(2a,m) + cs2(2a,m)][dn(x + a,m) − dn(x − a,m)]

+ mcs(2a,m)[cn(x + a,m) sn(x + a,m) + cn(x − a,m) sn(x − a,m)]. (A.7)

Identities for cn(x,m)

mcn2(x,m)[cn(x + a,m) + cn(x − a,m)] = −ds2(a,m)[cn(x + a,m) + cn(x − a,m)]

+ 2ns(a,m) cs(a,m) cn(x,m), (A.8)

mcn(x,m) cn(x + a,m) cn(x − a,m) = −ds(a,m) ds(2a,m)[cn(x + a,m)

+ cn(x − a,m)] + ds2(a,m) cn(x,m), (A.9)

mcn(x,m)[cn2(x + a,m) + cn2(x − a,m)] = cs(a,m) ns(a,m)[cn(x + a,m) + cn(x − a,m)]

− 2 ds2(a,m) cn(x,m) + ds(a,m)[dn(x + a,m) sn(x + a,m)

− dn(x − a,m) sn(x − a,m)], (A.10)

mcn(x + a,m) cn(x − a,m)[cn(x + a,m) + cn(x − a,m)]

= [cs(2a,m) ns(2a,m) − ds2(2a,m)][cn(x + a,m) + cn(x − a,m)]

+ ds(2a,m)[dn(x + a,m) sn(x + a,m) − dn(x − a,m) sn(x − a,m)], (A.11)

mcn2(x,m)[cn(x + a,m) − cn(x − a,m)] = −ds2(a,m)[cn(x + a,m) − cn(x − a,m)]

− 2 ds(a,m) dn(x,m) sn(x,m), (A.12)

mcn(x,m)[cn2(x + a,m)− cn2(x − a,m)] = cs(a,m) ns(a,m)[cn(x + a,m)− cn(x − a,m)]

+ ds(a,m)[dn(x + a,m) sn(x + a,m) + dn(x − a,m) sn(x − a,m)], (A.13)

mcn(x + a,m) cn(x − a,m)[cn(x + a,m) − cn(x − a,m)]

= [cs(2a,m) ns(2a,m) + ds2(2a,m)][cn(x + a,m) − cn(x − a,m)]

+ ds(2a,m)[dn(x + a,m) sn(x + a,m) + dn(x − a,m) sn(x − a,m)]. (A.14)
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